n-Type Molybdenum Diselenide-Based Photoelectrochemical Cells: Evidence for Fermi Level Pinning and Comparison of the Efficiency for Conversion of Light to Electricity with Various Solvent/Halogen/Halide Combinations

Lynn F. Schneemeyer and Mark S. Wrighton*

Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. Received April 21, 1980

Abstract: Interfacial energetics for n-type $MoSe_2$ ($E_g = 1.4 \text{ eV}$, direct) and photoelectrochemical conversion of light to electrical energy in the presence of X_n^-/X^- (X = Cl, Br, I) have been characterized in CH₃CN electrolyte solution. Data for MoSe₂ in $H_2O/I_3^-/I^-$ are included for comparison, along with a comparison of MoSe₂-based cells with MoS₂- (E_g = 1.7 eV, direct) based cells. Cyclic voltammetry for a set of reversible (at Pt electrodes) redox couples whose formal potential, E°, spans a range -0.8 to +1.5 V vs. SCE has been employed to establish the interface energetics of MoSe₂. For the redox couples having E° more negative than ~-0.1 V vs. SCE, we find reversible electrochemistry in the dark at n-type MoSe₂. When E° is somewhat positive of -0.1 V vs. SCE, we find that oxidation of the reduced form of the redox couple can be effected in an uphill sense by irradiation of the n-type MoSe₂ with $\geq E_g$ light; the anodic current peak is at a more negative potential than at Pt for such situations. The extent to which the photoanodic current peak is more negative than at Pt is a measure of the output photovoltage for a given couple. For E° more positive than $\sim +0.7$ V vs. SCE it would appear that this output photovoltage is constant at ~ 0.4 V. For a redox couple such as biferrocene ($E^{\circ}(BF^+/BF) = +0.3$ V vs. SCE) we find a photoanodic current onset at ~ -0.2 V vs. SCE; a redox couple with $E^{\circ} = 1.5$ V vs. SCE shows an output photovoltage of 0.43 V under the same conditions. The ability to observe (i) photoeffects for redox reagents spanning a range of E° 's that is greater than the direct E_{a} and (ii) constant photovoltage for a range of E° 's evidences an important role for surface states or carrier inversion such that a constant amount of band bending (constant barrier height) is found for a couple having E° more positive than $\sim +0.7$ V vs. SCE. Conversion of $\geq E_g$ light to electricity can be sustained in CH₃CN solutions of X_n^-/X^- (X = Cl, Br, I) with an efficiency that is ordered Cl > Br > I where n-type MoSe₂ is used as a stable photoanode. In aqueous solution n-type MoSe₂ is not a stable anode in the presence of similar concentrations of Br₂/Br⁻ or Cl₂/Cl⁻, showing an important role for solvent in thermodynamics for electrode decomposition. In CH₃CN, efficiency for conversion of 632.8-nm light to electricity has been found to be up to 7.5% for Cl_2/Cl^- , 1.4% for Br_2/Br^- , and 0.14% for I_3^-/I^- . Differences among these redox systems are output voltage and short-circuit current, accounting for the changes in efficiency. In H₂O, I_3^-/I^- yields a stable n-type MoSe₂-based photoelectrochemical cell with an efficiency for 632.8-nm light a little lower than that for the CH₃CN/Cl₂/Cl⁻ solvent/redox couple system. Data for MoS₂-based cells in the CH₃CN/ X_n^-/X^- solvent/redox couple systems show that the efficiency again depends on X: Cl > Br > I. In H₂O/I₃⁻/I⁻ an efficiency a little lower than that for the CH₃CN/Cl₂/Cl⁻ is obtained. MoSe₂-based cells are somewhat more efficient than MoS2-based cells, but significant variations in efficiency are found depending on the electrode sample used.

Metal dichalcogenide (MY₂) semiconductor photoelectrode materials have attracted wide interest as relatively stable photo anodes. $^{1\mbox{-}3}$ $\,$ While n-type MY_2 materials do have some favorable photoanode properties, no n-type MY₂ photoanode has been shown to be a durable electrode for O_2 evolution from H_2O . However, we have recently reported that both n-type MoS_2^{-4} and $MoSe_2^{-5}$ having a direct band gap, E_g , of 1.7 and 1.4 eV, respectively, can be used as a stable photoanode for the oxidation of Cl⁻ in CH₃CN solution. The formal potential E° of the Cl₂/Cl⁻ couple in CH₃CN is +1.1 V vs. SCE. The ability to effect Cl⁻ oxidation in CH₃CN is interesting, in part, because the E° is so positive and because the Cl_2/Cl^- couple is optically transparent over most of the visible spectrum. Even for strongly acidic aqueous solutions, Cl₂ is a more powerful oxidant than O_2 , and we are therefore interested in determining factors that allow Cl₂ to be generated without destruction of the MoS_2 or $MoSe_2$ photoanode surfaces.

In this article we report the results of a study of the interface energetics for n-type MoSe₂ in CH₃CN electrolyte solution. We have previously reported the results from a similar study of MoS₂.⁴ Additionally, we report a comparison of the efficiency for conversion of light to electricity employing halogen/halide, X_n^{-}/X^{-} (X = Cl, Br, I) redox systems in cells employing an n-type MoSe₂ or MoS₂ photoanode. The study of interface energetics of MoSe₂ reveals that photoeffects can be found for redox couples having E° 's that span a range that is greater than the separation of the valence, E_{VB} , and conduction band, E_{CB} , edges of MoSe₂. Further, for E° 's more positive than $\sim +0.7$ V vs. SCE, we find a photovoltage of ~ 0.4 V, independent of E° . These findings evidence a departure from the ideal model where (i) photoeffects are only possible for redox couples having E° between E_{CB} and E_{VB} that are assumed to be fixed for a given electrolyte solution and (ii) maximum output photovoltage, $E_{\rm B}$, varies with the electrochemical potential of the solution, E_{redox} , according to eq 1, where E_{FB}

$$E_{\rm B} = |E_{\rm redox} - E_{\rm FB}| \tag{1}$$

represents the so-called flat-band potential of the semiconductor.^{6,7}

 ^{(1) (}a) Tributsch, H.; Bennett, J. C. A. J. Electroanal. Chem. 1977 81,
 (b) Tributsch, H. Z. Naturforsch, A 1977, 32A, 972; J. Electrochem. Soc.
 1978, 125, 1086; Ber. Bunsenges. Phys. Chem. 1977, 81, 361; 1978, 82, 169.
 (c) Gobrecht, J.; Tributsch, H.; Gerischer, H. J. Electrochem. Soc. 1978, 125, (d) Ahmed, S. M.; Gerischer, H. Electrochim. Acta 1979, 24, 705. (e)
 Kautek, W.; Gerischer, H.; Tributsch, H. Ber. Bussenges. Phys. Chem. 1979, 83, 1000. (f) Tributsch, H.; Gerischer, H.; Clemen, C.; Bucher, E. Ibid., 1979, 83, 655

^{(2) (}a) Lewerenz, H. J.; Heller, A.; DiSalvo, F. J. J. Am. Chem. Soc. 1980, 102, 1877. (b) Menezes, S.; DiSalvo, F. J.; Miller, B. J. Electrochem. Soc. 1980, 127, 1751.

^{(3) (}a) Fan, F.-R. F.; White, H. S.; Wheeler, B.; Bard, A. J. J. Electrochem. Soc. 1980, 127, 518.
(b) Fan, F.-R. F.; White, H. S.; Wheeler, B. L.; Bard, A. J. J. Am. Chem. Soc. 1980, 102, 5142.
(4) Schneemeyer, L. F.; Wrighton, M. S. J. Am. Chem. Soc. 1979, 101, 1123

^{6496.}

⁽⁵⁾ Schneemeyer, L. F.; Wrighton, M. S.; Stacy, A.; Sienko, M. J. Appl. Phys. Lett. 1980, 36, 701.

⁽⁶⁾ Gerischer, H. J. Electronanal. Chem. 1975, 58, 263

⁽⁷⁾ Bard, A. J.; Bocarsly, A. B.; Fan, F.-R. F.; Walton, E. G.; Wrighton, M. S. J. Am. Chem. Soc. 1980, 102, 3671.

Figure 1. Comparison of cyclic voltammetry for TMPD at Pt and MoSe₂ (dark and illuminated and illumination discontinued at the anodic limit). Illumination was with 632.8-nm light at $\sim 50 \text{ mW/cm}^2$.

It would appear that for E_{redox} more positive than +0.7 V vs. SCE in CH₃CN that the photovoltage is independent of E_{redox} . Photovoltage independent of E_{redox} reflects the fact that Fermi level pinning occurs, as has been concluded⁷⁻⁹ for other small band gap photoelectrode materials such as GaAs^{7,8} and Si.^{7,9} Fermi level pinning can be attributed to surface states situated between E_{CB} and $E_{\rm VB}$, and such states have previously been invoked for MY_2 electrodes in aqueous media.^{1f} Alternatively, the $E_{\rm redox}$ independent photovoltage can be attributed to carrier inversion at the surface of the semiconductor when the band bending becomes large compared to the band gap of the semiconductor.¹⁰

Results and Discussion

a. Cyclic Voltammetry for Redox Couples at n-Type MoSe₂. Cyclic voltammetry of various redox couples has been compared at dark and illuminated (632.8 nm) n-type MoSe₂ and Pt electrodes. The measurements were made in CH₃CN/0.1 M [n- Bu_4N]ClO₄ at 25 °C under Ar. Where 632.8-nm illumination was used the light intensity was $\sim 50 \text{ mW/cm}^2$ and was found to be sufficiently high that diffusion limited photoanodic currents were observed at the concentration of redox reagent used. The redox reagents used all exhibit reversible electrochemistry at Pt

Figure 2. Comparison of cyclic voltammetry for biferrocene at Pt and at MoSe₂ (dark and illuminated and illumination discontinued at the anodic limit). Illumination was with 632.8-nm light at $\sim 50 \text{ mW/cm}^2$.

Figure 3. Comparison of cyclic voltammetry for TMPD and fac-BrRe-(CO)₃L at Pt and at MoSe₂ (dark and illuminated). Illumination was with 632.8-nm light at $\sim 50 \text{ mW/cm}^2$.

and span a range of E° 's from -0.8 to +1.5 V vs. SCE. All couples are fast, one-electron, outer-sphere systems where kinetics for heterogeneous electron transfer are not expected to differ significantly. Thus, differences in behavior can be attributed to differences in E° . Representative data from several different

⁽⁸⁾ Fan, F.-R. F.; Bard, A. J. J. Am. Chem. Soc. 1980, 102, 3677.

 ⁽⁹⁾ Bocarsly, A. B.; Bookbinder, D. B.; Dominey, R. N.; Lewis, N. S.;
 Wrighton, M. S. J. Am. Chem. Soc. 1980, 102, 3683. (10) (a) Gobrecht, J.; Gerischer, H.; Tributsch, H. Ber. Bunsenges, Phys.

Chem. 1978, 82, 1331. (b) Kautek, W.; Gerischer, H. Ibid. 1980, 84, 645 and private communication. (c) Turner, J. A.; Manassen, J.; Nozik, A. J. Appl. Phys. Lett., in press and private communication.

Table 1. Comparison of Anodic Peak Current Positions for Various Redox Couples at Pt and n-Type	e MoSe,"	
---	----------	--

		V vs. SCE			
redox couple	electrode	$E^{\circ b}$	$E_{\mathbf{PA}}(\mathbf{A}^{+}/\mathbf{A})$	$E_{\mathbf{PA}}(\mathbf{A}^{2+/}\mathbf{A}^{+})$	
[PQ] ^{2+//0}	Pt	-0.85, -0.45	-0.80	-0.40	
•	MoSe, (dark)	,	-0.80	-0.40	
	MoSe, (light)		-0.80	-0.40	
[decamethy]ferrocene] ^{+/0}	Pt	-0.12	-0.06		
	MoSe, (dark)		-0.06		
	MoSe, (light)		-0.05		
[TMPD] ^{2+ // 0}	Pt	0.10, 0.68	0.15	0.73	
	MoSe, (dark)		0.15		
	MoSe, (light)		0.12	0.35	
[biferrocene] ^{2+ //0}	Pt	0.30, 0.67	0.33	0.68	
[]	MoSe, (dark)				
	MoSe, (light)		0.05	0.24	
[ferrocene] ^{+/o}	Pt	0.38	0.43		
	MoSe, (dark)				
	MoSe, (light)		0.17		
[acetvlferrocene] ^{+/0}	Pt	0.63	0.66		
[]	MoSe. (dark)	0.00			
	MoSe (light)		0.36		
[1,1'-diacetvlferrocene] ^{+/0}	Pt	0.83	0.89		
	MoSe (dark)	0.00	0.05		
	MoSe (light)		0.50		
$[Ru(2, 2'-hipyridine)]^{3+/2+}$	Pt	1 25	1 30		
	MoSe (dark)	1.23	1.50		
	$MoSe_2(uark)$		0 9 2		
$fac_{-}[BrBe(CO)]$ []] = gly ovalhis(tert_hutylimine)	\mathbf{D}_{+}	1 45	1 48		
$fac-[Birc(CO)_3 D], D = giy 0xalois(tert-outy infinite)$	ri MoSa (darla)	1.40	1.40		
	$MOSe_2$ (uark) MoSe_(light)		1.05		
	$MOSe_2$ (light)		1.05		

^a All data are for CH₃CN/0.1 M [n-Bu₄N]ClO₄ solutions at 25 °C at a scan rate of 100 mV/s. Pt and MoSe₂ data for a given reductant were recorded in the same solution. Reductants are at ~1 mM concentration in each case. E_{PA} is the position of the anodic current peak. TMPD is N, N, N', N'-tetramethyl-p-phenylenediamine; PQ is N, N'-dimethyl-4,4'-bipyridinium. Illumination of n-type MoSe₂ was with 632.8-nm light from a He-Ne laser (~50 mW/cm²). ^b These E° 's are from cyclic voltammetry at Pt-wire electrodes in the electrolyte solution used for all other studies.

 $MoSe_2$ samples are given. There is some variation from sample to sample, but the essential properties are constant.

Table I summarizes data for cyclic voltammetry at a scan rate of 100 mV/s, and Figures 1–3 show cyclic voltammetry scans for several key redox couples. The redox couples can be divided into five classes depending on E° . The first class of couples are those that are reversible in the dark at n-type MoSe₂: these couples have E° more negative than ~ -0.1 V vs. SCE including [decamethylferrocene]^{+/0}, $E^{\circ} = -0.12$, and [N,N'-dimethyl-4,4'-bipyridinium]^{2+/+/0}, $E^{\circ} = -0.45$ and -0.85. These couples behave essentially the same at Pt and n-type MoSe₂, and $\geq E_g$ illumination of the MoSe₂ has little, if any, effect on the cyclic voltammetric waves.

The second class of redox couples is typified by the N, N, N'. N'-tetramethyl-p-phenylenediamine, TMPD, system $[TMPD]^{+/0}$, $E^{\circ} = +0.10$. For the $[TMPD]^{+/0}$ system (Figure 1), we find that the $[TMPD]^{0} \rightarrow [TMPD]^{+}$ oxidation at n-type MoSe₂ can be effected in the dark, but illumination of the MoSe₂ with $\geq E_g$ light results in a negative shift of both the anodic current onset and the anodic current peak compared to the behavior at Pt. Redox couples having E° in the vicinity of +0.1 exhibit behavior similar to TMPD. Such systems appear to be essentially reversible in the dark at MoSe₂ at low scan rates. At fast scan rates such couples depart from reversible behavior in the dark in that the anodic current peak moves more positive and peak current as a function of scan rate departs from the expected (scan rate)^{1/2} dependence for a reversible couple.¹¹

The third class of redox couples are those having E° somewhat positive of +0.2. Such couples are not oxidizable in the dark at n-type MoSe₂, but upon $\geq E_g$ illumination the oxidation of the reduced form of the couple can be effected at a more negative potential than at Pt. The cyclic voltammetry of this class is represented by [biferrocene]^{+/0}, $E^{\circ} = +0.30$ (Figure 2).

Thus, the first three classes of redox couples would appear to give electrochemistry expected for an n-type semiconductor having

Scheme I. Interface Energetics for an "Ideal" n-Type Semiconductor/Liquid Interface

 $E_{\rm FB} \approx -0.2$ V vs. SCE.^{6,12} Scheme I depicts the interface energetics for an ideal semiconductor/liquid electrolyte junction. Couples more negative than $E_{\rm CB}$ are reversible, and no photoeffects are found, since E° is in the conduction band and the n-type material has electrons as the majority charge carrier.^{6,12} Couples having E° somewhat positive of $E_{\rm CB}$ give a photoanodic peak that is more negative than at a reversible electrode such as Pt. No oxidation for class III couples is observable in the dark; oxidation requires the photogeneration of holes, the minority carrier, that would have an oxidizing power no greater than the position of $E_{\rm VB}$. The extent to which the photoanodic peak is more negative than the anodic peak at Pt is a measure of the output photovoltage from the photoanode. The maximum photovoltage is expected to be given by eq 1.

The fourth class of redox couples, however, do not behave as would be expected from the ideal model for a semiconductor/liquid electrolyte junction. Couples having E° more positive than +0.7 belong to this fourth class of redox couples and are typified by the [fac-BrRe(CO)₃L]^{+/0} complex (Figure 3). These couples show Scheme II. Interface Energetics for an n-Type Semiconductor/ Liquid Interface When Fermi Level Pinning Applies

a photoanodic peak that is ~ 0.4 V more negative than the anodic peak at Pt. Importantly, the 0.4 V output voltage is independent of E° for couples out to +1.5 V. The ideal model would predict a larger output photovoltage as E° becomes positive according to eq 1. Another inconsistency is that photoeffects can be observed for a range of E°'s that exceeds E_g of MoSe₂. The [TMPD]⁰ \rightarrow $[TMPD]^+$ photocurrent onset is at ~-0.2 V vs. SCE that would establish E_{CB} at ~-0.3 V vs. SCE and E_{VB} at +1.1 V vs. SCE, since $E_g = 1.4$ eV and the donor density of MoSe₂ places E_{CB} about 0.1 V more negative than E_{FB} . Thus, the maximum oxidizing power of photogenerated holes should be +1.1 V, and we should be unable to effect the uphill oxidation of the reduced form of a couple having E° more positive than this value. But several reagents such as the fac-BrRe(CO)₃L are photooxidizeable at illuminated n-type MoSe₂, and the photoanodic peak is ~ 0.4 V more negative than at Pt and yet E° is more positive than +1.1 V. A third inconsistency with the ideal semiconductor/liquid electrolyte model is that reduction peaks for oxidized species can be significantly more positive than the \sim -0.2 V $E_{\rm FB}$ value. Finally, we find that redox reagents such as biferrocene that have two one-electron oxidations with different E° 's give two one-electron waves at illuminated n-type MoSe₂ rather than one two-electron wave as would be expected within the framework of the ideal model for such interfaces.6,13

Oxidation of hexamethylbenzene is irreversible at Pt, but the position of the anodic current peak is $\sim +1.6$ V vs. SCE. We find that hexamethylbenzene can be oxidized at illuminated n-type MoSe₂ with a photoanodic current peak at +1.2 V vs. SCE-again about 0.4 V more negative than at Pt. Study of redox couples having E° significantly more positive than +1.6 V vs. SCE (e.g., fac-[(CH₃CN)Re(CO)₃(phen)]^{2+/+} (phen = 1,10-phenanthroline), $E^{\circ} = +1.8$ V vs. SCE) cannot be studied at illuminated n-type MoSe₂ because we find a large photoanodic background current in $CH_3CN/0.1 M [n-Bu_4N]ClO_4$ onsetting at potentials in the range of +1.2 V vs. SCE. This current is presumably the photo anodic decomposition of the MoSe₂ that onsets at $\sim +0.5$ V vs. SCE in aqueous electrolyte solutions. It is this ~ 0.7 V more positive photoanodic decomposition onset in CH₃CN that allows the competitive oxidation of species such as Cl^{-5} Perhaps in other solvent/electrolyte combinations the photoanodic decomposition can be shifted even more positive, since the solvation of the photoanodic decomposition products is a key term in the thermodynamics for this process.¹⁴ For now, we note that systems requiring +1.6 V vs. SCE can be oxidized ~ 0.4 V uphill at illuminated n-type $MoSe_2$ and that couples having E°'s in the range +0.7 to +1.6 V vs. SCE appear to give essentially a constant output. Figure 3 includes data for $[TMPD]^{2+/+}$ and fac- $[BrRe(CO)_{3}L]^{+/0}$ in the same solution showing the same negative shift in anodic current peak for these two disparate couples.

Since the reagents belonging to the fourth class of redox couples do not behave according to the ideal model⁶ at illuminated n-type MoSe₂, we propose that Fermi level pinning^{7,10} applies to this set of reagents. Schemes I and II compare the interface situation within the framework of the ideal model and compare it when Fermi level pinning applies. Fermi level pinning refers to a situation where the photovoltage is independent of E_{redox} for a significant variation in E_{redox} . That is, for the variation in E_{redox} there is a constant potential drop across the space-charge region of the semiconductor and a variation in the drop across the Helmholtz layer. Such a model^{7,10} accommodates the finding that (i) photo effects are found for redox couples having E° 's spanning a range greater than E_g , (ii) reduction can be found at potentials more positive than $E_{FB} \approx -0.2$ V vs. SCE, and (iii) multielectron redox couples can give multi one-electron waves at illuminated n-type MoSe₂ with a potential spacing near that found at Pt, though each one-electron wave is shifted to a more negative potential than at Pt. The evidence for photoelectrochemical effects for redox couples whose E° 's span a greater range than the separation of E_{CB} and $E_{\rm VB}$ of MoSe₂ is strengthened by noting that MoSe₂ exhibits optical properties consistent with an indirect band gap at ~ 1.1 eV.¹⁵ This means that the E_{VB} position would be at +0.8 V vs. SCE not at +1.1 V vs. SCE as would be assigned for a 1.4-eV band gap material.

Fermi level pinning can be attributed to a significant density of surface states situated between E_{CB} and E_{VB} ⁷ or to carrier inversion¹⁰ such that the n-type material develops a near surface "p-type" region due to the fact that the Fermi level in this region becomes closer to the top of the valence band. The surface states between E_{CB} and E_{VB} seem to provide a better rationale for reductions that occur more positive than $E_{\rm FB}$.^{12,13} But the carrier inversion model provides a better rationale for the fact that some redox couples behave more or less as expected (E_{redox} more negative than +0.7 V vs. SCE) while others give constant output photovoltage independent of E_{redox} . The layered MY₂ semiconductors are judged to be relatively free of intrinsic surface states,16 but this does not rule out an important role for "extrinsic" surface states from oxide or other impurity material on the surface during operation. Whatever the origin of the Fermi level pinning, it appears that the MoSe₂ photoanodes can be used to effect oxidations that would be regarded as impossible within the ideal model⁶ where E_{CB} and E_{VB} remain fixed.

Other small band gap, n-type semiconductors appear to exhibit Fermi level pinning. For example, n-type CdTe¹⁷ ($E_g = 1.4 \text{ eV}$) and GaAs ($E_g = 1.4 \text{ eV}$)⁷ both give a photovoltage that is independent of E_{redox} for a range spanning more than the separation of E_{VB} and E_{CB} . Unlike MoSe₂, these materials give photovoltages for very negative redox couples where the semiconductor could have an accumulation layer (rather than carrier inversion layer). In these cases it would appear that the surface state model more adequately accounts for the large range of redox couples that give a constant photovoltage.

Aside from surface states and carrier inversion, it is worth noting that hot carrier injection is another possible rationale for photovoltages from redox couples situated more positive than E_{VB} of n-type semiconductors.¹⁸ Unusually strict criteria need apply for this rationale to apply, and it does not appear likely that hot carrier injection will apply to MoSe₂/liquid interfaces.

Semiconductor/metal (Schottky barrier) interfaces also exhibit Fermi level pinning.¹⁹ In analogy to the semiconductor/liquid junctions, it is sometimes difficult to determine what causes the

⁽¹³⁾ Bocarsly, A. B.; Walton, E. G.; Bradley, M. G.; Wrighton, M. S. J. Electroanal. Chem. 1979, 100, 283.

⁽¹⁴⁾ Bard, A. J.; Wrighton, M. S. J. Electrochem. Soc. 1977, 124, 1706.

^{(15) (}a) Wilson, J. A.; Yoffe, A. D. Adv. Phys. 1979, 18, 193.
(b) Goldberg, A. M.; Beal, A. R.; Levy, F. A.; Davis, E. A. Philos. Mag. 1975, 32, 367;
(c) Kautek, W.; Gerischer, H.; Tributsch, H. J. Electrochem. Soc., in press and private communication.

^{(16) (}a) Kama, A.; Enari, R. Conf. Ser.-Inst. Phys. 1979, No. 43, Chapter 5.
(b) McMenamin, J. C.; Spicer, W. E. Phys. Rev. B 1977, 16, 5474.
(17) Aruchamy, A.; Wrighton, M. S. J. Phys. Chem., in press.
(18) (a) Nozik, A. J.; Bourdreaux, D. S.; Chance, R. R.; Williams, F. Adv.

^{(18) (}a) Nozik, A. J.; Bourdreaux, D. S.; Chance, R. R.; Williams, F. Adv. Chem. Ser. 1980, No. 184, 155. (b) Boudreaux, D. S.; Williams, F.; Nozik, A. J. J. Appl. Phys. 1980, 51, 2158.

^{(19) (}a) Mead, C. A.; Spitzer, W. G. Phys. Rev. A 1964, 134, 714. (b) McGill, T. C. J. Vac. Sci. Technol. 1974, 11, 935.

Scheme III. Classification of Redox Couples Examined at MoSe₂ Photoanodes

	(-)	
	0.0	<u>Class I</u> (E° More Negative Than -0.1 V vs. SCE) Reversible Electrochemistry in the Dark as at Pt e.g. [N,N'-dimethyl-4,4'-bipyridininium] ^{2+/1+/0}
	0.2	Class I1 (E° ~ +0.1 V vs. SCE) Good Oark Electrochemistry, but Photoeffect
	.+0.2	Observable such that photoanodic Current Peak is More Negative than Anodic Peak at Pt e.g. $\left[\text{TMPD} ight]^{+/0}$
SCE		<u>Class III</u> (E° More Positive Than -+0.2 V vs. SCE) No Dark Anodic Current; Photoanodic Current Peak More Negative Than Anodic Peak at Pt. E _B Depends On E°. e.g. [biferrocene] ^{+/O}
Potential, V vs.		<u>Class IV</u> (E ^z Between ~+0.7 and ~+1.6 V vs. SCE) No Oark Anodic Current; Photoanodic Current Peak ~0.4 V More Negative than Anodic Peak at Pt. Fermi Level Pinning Applies. e.g. <u>fac</u> -[BrRe(CO) ₃ L] ^{+/O}
	·+).6	<u>Class V</u> (E° More Positive than >+1.6 V vs. SCE) Electrochemistry Obscured by Photoanodic Decomposition of Photoanodes. e.g. <u>fac</u> -[(CH ₃ CN)Re(CO) ₃ (1,10-phenanthroline)] ^{2+/+}

output photovoltage to be independent of the contacting metal. Direct experimental probes of the interface in situ will be necessary to determine the origin of this phenomenon.

Fermi level pinning has been invoked for several other small band gap semiconductors immersed in liquid electrolytes.^{7-9,17} For p-type Si it would appear that couples having E° more negative than 0.0 V vs. SCE will exhibit a constant photovoltage.⁹ Thus, for this elemental, p-type semiconductor a redox couple having E° more negative than 0.0 V vs. SCE would give the same photovoltage and could prove useful in a stable device. It is crucial that p-type Si is chemically durable at very negative potentials. All n-type materials seem to undergo photoanodic decomposition at some positive potential,¹⁴ and though Fermi level pinning may apply, chemical reality precludes the use of very positive couples. For n-type MoSe₂, couples more positive than +1.6 V vs. SCE in CH₃CN appear to be useless, since n-type MoSe₂ undergoes photoanodic decomposition in this range. However, the MY₂ materials seem to be durable at significantly more positive potentials than any other nonoxide materials studied to date. For example, n-type $CdTe^{17}$ and n-type $GaAs^{20}$ materials having a direct 1.4 eV value of E_g undergo photoanodic decomposition at 0.0 V vs. SCE in CH₃CN solutions in contrast to the +1.2 V vs. SCE associated with the direct gap, $E_g = 1.4 \text{ eV}$, n-type MoSe₂. Thus, we note a fifth class of redox couples: those where E° is significantly more positive than potentials that give photoanodic decomposition. Scheme III summarizes the findings for redox couples studied at MoSe₂ photoanodes. We propose to use this classification in discussing redox behavior at n-type semiconductor/liquid junctions. A similar classification of redox systems would be possible for p-type electrodes except that class I would be associated with positive couples overlapping the valence band and the photogenerated minority carrier is the electron. This classification scheme will be elaborated in a subsequent report concerning p-type InP.21

In our earlier study⁴ of n-type MoS₂ we found many redox couples that give photoanodic current onsets at ~+0.3 V vs. SCE, but the most positive redox couple examined has an E° of ~+1.25 V vs. SCE. The direct gap of MoS₂ is 1.7 eV, but the indirect gap is at ~1.2 eV from optical measurements.¹⁵ This means that the E_{VB} is in fact at ~+1.4 V vs. SCE not the ~1.9 V vs. SCE assignment based on the $E_g = 1.7 \text{ eV}_i$ direct.⁴ We have now examined the cyclic voltammetry of [(CH₃CN)Re(CO)₃(2,2'biquinoline)]^{2+/+}, $E^{\circ} = +1.8$ V vs. SCE, at illuminated MoS₂. We find that the photoanodic peak for the oxidation of the reduced form of the couple is \sim 450 mV more negative than the corresponding peak at Pt. Since the E° for this couple is +1.8 V vs. SCE, the photoeffects for this system suggest that Fermi level pinning also applies to MoS₂ contacted by fairly positive redox couples. The $[BrRe(CO)_3L]^{+/0}$, $E^\circ = 1.45$ V vs. SCE (see Table I), was also examined at illuminated n-type MoS_2 in CH_3CN , and the photoanodic peak is also $\sim 450 \text{ mV}$ more negative than at Pt. Our previous data for $Ru(bpy)_3^{3+/2+}$ (bpy = 2,2'-bypyridene), E° = 1.25 V vs. SCE, showed a 470-mV negative shift, while $[1,1'-diacetylferrocene]^{+/0}$, $E^{\circ} = 0.83$ V vs. SCE, only showed a \sim 280-mV negative shift. All of the couples for which photoanodic peaks are observed show a dark reduction current at a potential positive of the " E_{FB} " at +0.3 V. This fact implicates surface states as we previously noted,⁴ but now we additionally conclude that couples for which E° is more positive than +1.0 V can belong to class IV. The output photovoltage for the class IV couples is $\sim 450 \text{ mV}$. Photoanodic decomposition for MoS₂ in CH₃CN/[*n*-Bu₄N]ClO₄ onsets at \sim +1.4 V vs. SCE and couples ~ 0.4 V more positive than this are thus assigned to class V.

b. Conversion of Light to Electricity Employing Halogen/Halide **Redox Couples.** We discovered that n-type MoSe₂ and MoS₂ are stable photoanodes in CH₃CN electrolyte solutions containing halogen/halide, X_n^-/X^- (X = Cl, Br, I) redox couples.^{4,5} By way of contrast, only the X = I couple is believed to yield a stable photoelectrochemical cell when H₂O is the solvent. As indicated above, the onset of photoanodic decomposition of the photoanodes in H₂O is at ~+0.5 V vs. SCE which is more negative than the E° of the Br₂/Br⁻, $E^{\circ} = +0.63$ V vs. SCE, and the Cl₂/Cl⁻, E° = +1.1 V vs. SCE. In CH₃CN these more positive E° 's are more negative than the onset potential for photoanodic decomposition. Thus, the use of CH₃CN solvent allows the study of both Br⁻ and Cl⁻ oxidations at the illuminated photoanodes. We have made a comparison of the efficiency of n-type MoSe₂- and MoS₂-based photoelectrochemical cells where eq 2 and 3 represent the photoanode and cathode reactions, respectively. Additionally, we have compared the results in CH_3CN for X = I with those in H_2O for X = I that does give a stable cell.

$$nX^- \rightarrow X_n^- + (n-1)e^-$$
 (photoanode) (2)

$$X_n^- + (n-1)e^- \rightarrow nX^- \text{ (cathode)}$$
(3)

$$X = Cl, Br, I$$

At first it would seem appropriate to compare the X_n^{-}/X^{-} systems with the couples for which data are given in Table I. However, all of the systems in Table I are outer-sphere, oneelectron redox reagents, unlike the halogen couples that involve at least two-electron processes. Nonetheless, we have carried out cyclic voltammetry of X^- at illuminated MoSe₂. Generally, we do find that anodic current peaks at Pt are shifted to a more negative potential at illuminated MoSe₂ photoanodes. None of the X⁻ species at ~ 1 mM are oxidizable in the dark at n-type $MoSe_2$ at 100-mV/s scan rates. Thus, we place the X = I and Br couples in the class III category, and the Cl₂/Cl⁻ system is put in class IV on the basis of the fact that $E^{\circ} = +1.1$ V vs. SCE is in the $\sim +0.7$ to +1.6 V vs. SCE range. At the low concentrations (~1 mM) of X⁻ used in cyclic voltammetry we find that the extent of the negative shift is ~ 0.1 V for Br⁻ and I⁻ and ~ 0.3 V for Cl⁻. These data are not as reproducible as for the couples in Table I nor are the current waves as clean as for the couples in Table I. Even at Pt-wire electrodes the cyclic voltammetry is not as clean and reproducible as would be desirable presumably due to adsorption onto Pt and corrosion of the Pt. But the general photoeffects expected for class III (X = I, Br) and class IV (X Cl) redox couples are found.

Comparison of steady-state photocurrent-voltage curves in CH₃CN containing ~ 1.0 M X⁻ reveals that all three halides behave in a similar manner except that the onset of photocurrent is ordered such that I⁻ oxidation is most negative (onset ~ 0.1 V

⁽²⁰⁾ Dominey, R. N.; Wrighton, M. S., to be submitted for publication (results for GaAs).

⁽²¹⁾ Dominey, R. N.; Lewis, N. S.; Wrighton, M. S, to be submitted for publication.

Table II. Data from Steady-State Photocurrent-Voltage Curves for X⁻ Oxidation at Illuminated $MOSe_a^a$

X ⁻ (concn, M)	E° (X _n ⁻ /X ⁻), V vs. SCE	input power, ^b mW	photocurrent onset, V vs. SCE	Φ _e at +1.0 V vs. SCE ^c
Cl ⁻ (1.0)	+1.1	0.16	~+0.44	0.60
		0.60	~+0.36	0.62
		3.3	~+0.32	0.62
Br ⁻ (1.0)	+0.7	0.17	~+0.26	0.55
		0.61	$\sim +0.20$	0.57
		3.2	~+0.15	0.52
I⁻ (0.9)	+0.3	0.16	~+0.05	0.52
		0.60	~+0.05	0.52
		3.2	~-0.10	0.56

^{*a*} All data are for stirred CH₃ CN solutions containing 1.0 M $[Et_4N]Cl, 1.0 M [Et_4N]Br, or 0.9 M [$ *n* $-Bu_4N]I at 25 °C under Ar. ^{$ *b*} Input illumination from a He-Ne laser, 632.8 nm, having a 0.6-mm beam diameter. ^{*c*} Quantum yield for electron flow corresponding to X⁻ oxidation at +1.0 V vs. SCE.

vs. SCE) and Cl⁻ oxidation is most positive (onset $\sim +0.3$ V vs. SCE), leaving Br⁻ oxidation in between (onset $\sim +0.15$ V vs. SCE). These data and other features are summarized in Table II. As shown, the quantum yield at a positive potential is high in all cases and independent of light intensity over the range studied. The electrode surfaces are good specular reflectors, accounting for a significant loss in current. The rectangularity of the photocurrent-voltage curves is very good for all systems at the lowest intensity but declines significantly at the highest intensity. The shape of curves is independent of X⁻; all show a region where photocurrent is insensitive to voltage (hole limited current) that begins ~ 0.4 V positive of the onset voltage of the lowest intensities.

The difference of importance, with respect to optical energy conversion efficiency, is the onset of photocurrent for X^- oxidation relative to the E° of the X_n^{-}/X^{-} couple. This is an indication that the output voltage from n-type MoSe₂-based cells employing the X_n^{-}/X^{-} couples will have an output voltage that depends on X with the order Cl > Br > I. Indeed, for the solutions used to determine data given in Table II, we find that oxidation of X⁻ at Pt has about the same onset for X = I and is ~ 0.3 V more positive for X = Br and $\sim 0.5 V$ more positive for X = Cl. Thus, solutions containing significant quantities of X_n^{-1} in addition to X^- yield a light to electricity conversion efficiency that depends on X in the order Cl > Br > I (Table III and Figure 4). The main reason for the efficiency variation is output photovoltage variation, since the shape of the steady-state current potential curves and the limiting quantum yield for electron flow are independent of X.

The rather poor efficiency associated with the I_3^-/I^- redox couple in CH₃CN stands in contrast to the rather good efficiency associated with this couple when H_2O is the solvent. With the same electrodes that give poor properties in CH₃CN we find rather good properties in H₂O solvent. Conversion efficiencies of the order of 3% can be realized in H₂O solvent containing the I_3^{-}/I^{-} couple. We believe the improved efficiency to result from two factors that both lead to improved output voltage. First, the formal potential of the I_3^{-}/I^{-} couple is somewhat more positive in H_2O than in CH₃CN, and, second, there appears to be a somewhat more negative onset of photoanodic current and the rectangularity is improved in H_2O compared to CH_3CN . The latter effects are likely due to a rather strong interaction of I⁻ with the MoSe₂ surface in H_2O . Adsorption of anions onto the photoanode is known to effect a negative shift of E_{FB} . Adsorption of I⁻ in CH₃CN solution likely occurs as well, but the effects are less pronounced.

In the case of MoS₂, the effect of I⁻ adsorption in H₂O also results in significantly improved efficiency compared to that of CH₃CN (Table IV). But even in CH₃CN the adsorption effect of I⁻ is pronounced. For example, $E^{\circ}(I_3^-/I^-) = +0.2$ V vs. SCE in CH₃CN would indicate for n-type MoS₂ that class II behavior would be expected, as we found for [ferrocene]^{+/0} having $E^{\circ} =$

Figure 4. Steady-state photocurrent-voltage curves for $MoSe_2$ (photoanode) based cells in various electrolyte solutions as a function of input optical power (632.8 nm). For power or current density multiply values given by 354 cm⁻². E_{redox} denotes the solution potential in each case. These data are for $MoSe_2$ sample no. 3 in Table III.

Figure 5. Steady-state photocurrent-voltage curves for MoS₂ (photoanode) based cells in various electrolyte solutions as a function of input optical power (632.8 nm). For power or current density multiply values given by 31.8 cm⁻². E_{redox} denotes the solution potential in each case. These data are for MoS₂ sample No. 1 in Table IV.

+0.38 V vs. SCE. But we actually find that I⁻ exhibits class III behavior at n-type MoS₂; i.e., we find no oxidation in the dark at ~1 mM concentration and 100-mV/s scan rate and photo-oxidation can be effected at a potential more negative than at Pt. As for MoSe₂, the efficiency for n-type MoS₂-based cells is a little larger when CH₃CN/Cl₂/Cl⁻ is used than when the H₂O/I₃⁻/I⁻ system is used. Further, the MoS₂ appears to be unstable as a photoanode in aqueous solutions of ~1.0 M Br or Cl⁻ but is durable as a photoanode in CH₃CN solutions of these halides. The efficiency for MoS₂-based cells employing CH₃CN solutions of X_n^-/X^- is ordered according to X = Cl > Br > I, as we find in MoSe₂ (Table IV and Figure 5). Comparing MoSe₂ and MoS₂, we find that at 632.8 nm the MoSe₂ is somewhat more efficient

M sa	IoSe ₂ mple	solvent/ X_n^-/X^- (E_{redox} , V vs. SCE)	input pwr, ^b mW	$\Phi_e at E_{redox} c$	$\max E_{\mathbf{V}}, mV$ $(E_{\mathbf{V}} \text{ at } \eta_{\max}, mV)^d$	n _{max} , ^e %	fill factor ^f
	1	$CH_{CN}/C1_{CT}$ (+1.05)	0.26	0.73	360 (250)	5.9	0.46
	-		1.0	0.65	410 (250)	54	0.41
			2.4	0.58	450 (250)	5.3	0.40
			3.3	0.55	450 (250)	4.4	0.34
			5.9	0.45	480 (250)	3.3	0.30
	2	$CH_2CN/Cl_2/Cl^-$ (+0.96)	0.26	0.65	460 (350)	7.5	0.50
			0.94	0.68	500 (300)	7.2	0.40
			2.6	0.66	540 (250)	4.0	0.22
			4.6	0.48	550 (250)	2.6	0.19
	3	$CH_3CN/Cl_2/Cl^-$ (+1.00)	0.27	0.50	370 (250)	4.8	0.51
			1.0	0.56	440 (250)	5.2	0.42
			3.1	0.41	470 (230)	3.2	0.33
			5.6	0.43	490 (230)	2.7	0.25
	3	$CH_{3}CN/Cl_{2}/Cl^{-}$ (+0.83)	0.26	0.60	440 (250)	5.2	0.38
			0.99	0.52	460 (220)	3.1	0.25
			3.0	0.34	490 (180)	1.6	0.19
			5.6	0.28	500 (170)	1.2	0.16
	4	$CH_{3}CN/Br_{2}/Br^{-}(+0.53)$	0.30	0.29	340 (150)	1.4	0.29
			0.77	0.31	390 (150)	1.1	0.18
			2.0	0.18	420 (150)	0.6	0.15
			3.5	0.11	430 (150)	0.4	0.15
	5	$CH_{3}CN/Br_{2}/Br^{-}(+0.53)$	0.30	0.23	290 (150)	0.8	0.24
			0.77	0.23	330 (150)	0.7	0.18
			2.0	0.14	370 (150)	0.4	0.15
	3	$CH_{3}CN/Br_{2}/Br^{-}(+0.47)$	0.26	0.38	280 (150)	1.1	0.20
			0.96	0.21	300 (130)	0.5	0.17
			3.1	0.11	350 (130)	0.3	0.17
			5.5	0.08	370 (150)	0.3	0.17
	6	$CH_3CN/I_3/I (+0.085)$	0.22	0.04	90 (40)	0.05	0.28
			0.75	0.03	100 (40)	0.04	0.30
			2.2	0.03	130 (40)	0.03	0.19
	~		4.6	0.03	160 (40)	0.03	0.17
	/	$CH_3CN/I_3/I (-0.02)$	0.26	0.14	60 (30)	0.09	0.22
			1.0	0.11	100 (60)	0.14	0.25
			3.3	0.08	130 (60)	0.12	0.20
	2	CH CN / I = / I = (+0.05)	0.4	0.03	20 (5)	0.08	0.19
	5	$CH_3 CN/I_3 / I (+0.03)$	0.20	0.02	20 (3)	0.04	0.37
			0.97	0.02	160 (90)	0.02	0.23
			5.1	0.02	100 (90)	0.03	0.25
	2		0.26	0.01	260 (270)	2.0	0.21
	5	$1_2 \sqrt{1_3} / (-0.20)$	0.20	0.20	460 (200)	2.0	0.55
			2.0	0.21	510 (320)	2.9	0.30
			5.0	0.21	540 (330)	2.7	0.45
	7	H O/I - /I - (+0.28)	0.26	0.22	360 (250)	3.4	0.51
	,		1 1	0.30	450 (250)	3.9	0.45
			3.6	0.32	480 (250)	2.7	0.34
			6.6	0.27	500 (250)	2.0	0.29
			~~~	<u></u>			

Table III. Conversion Efficiency for n-Type MoSe₂-Based Cells Employing  $X_n/X^-$  Couples^a

^a All data are for stirred solutions of 1.0 M [Et₄N] Cl, 1.0 M [n-Bu₄N] Br, 1.0 M [n-Bu₄N] I, NaI, or LiI with appropriate amounts of X₂ added to bring  $E_{redox}$  of the solution to the indicated value. Solutions are kept under Ar. ^b Input optical power from a 632.8 nm (0.6-mm beam diameter) He-Ne laser. For power density multiply by 354 cm⁻². ^c Quantum yield for electron flow at an n-type MoSe₂ potential equal to  $E_{redox}$  of the solution. This corresponds to the short circuit quantum yield. ^d Open circuit photovoltage and output at the maximum power point is given in parentheses. ^e Maximum efficiency for conversion of 632.8-nm light to electricity. ^f Fill factor is a measure of the rectangularity of the output photovoltage-photocurrent curve and is defined to be (max power out)/(max  $E_V \times$  short-circuit photocurrent).

under the same conditions in CH₃CN. Likewise in  $H_2O/I_3^-/I^-$  the MoSe₂-based cell is somewhat more efficient.

We previously communicated⁵ results, indicating a large improvement in efficiency for the CH₃CN/Cl₂/Cl⁻ solvent/redox system by using MoSe₂ photoanodes rather than MoS₂ photoanodes.⁴ Data in Tables III and IV and Figures 4 and 5 show that our MoSe₂ samples do indeed give a higher efficiency at an order of magnitude greater input optical power density. However, the improvement in 632.8-nm conversion efficiency is not quite as great as originally estimated⁵ perhaps owing to the use of a relatively poor MoS₂ sample coupled with a relatively low concentration (0.2 M) of Cl⁻ for the MoS₂-based cell. An advantage for MoSe₂-based cells can still be realized from the smaller value of the direct band gap for MoSe₂ (1.4 eV) compared to that for MoS₂ (1.7 eV).

The efficiencies given in Tables III and IV for the  $H_2O/I_3^-/I^-$  system are of the same order as previously reported by other

groups^{1,2} but are not as high as the best. Such variations are expected among different samples depending on their surface or bulk properties. Our data indicate that the best efficiencies will be found for cells employing the  $CH_3CN/Cl_2/Cl^-$  system.

## Experimental Section

Materials. Single crystals of  $MoSe_2 (\rho_{RT} = 6.2 \ \Omega \ cm)$  were grown by vapor phase transport by using  $Br_2$  or  $I_2$  as the transport agent. The thin, flat crystals were of  $0.01-0.2 \ cm^2$  in exposed area (001 face). All samples were found to be n-type from photoeffects observed. N-type  $MoS_2$  samples were from the same source previously used.⁴ Spectrograde CH₃CN, ferrocene,  $I_2$ ,  $Br_2$ ,  $Cl_2$ , acetylferrocene, hexamethylbenzene, LiCl, [Et₄N]Cl, [*n*-Bu₄N]Br, LiI, NaI, and [*n*-Bu₄N]I were used as obtained from commercial sources after the absence of electroactive impurities was ensured by examining electrochemistry at a Pt electrode. 1,1'-Diacetylferrocene was purified by column chromatography, and N,N',N'-N'-tetramethyl-*p*-phenylenediamine (TMPD) was purified by sublimation. Biferrocene (BF) and decamethylferrocene were prepared as de-

Table IV. Output of  $MoS_2$ -Based Photoelectrochemical Cells Employing  $X_n/X^-$  Redox Couples

MoS ₂ sample	solvent/ $X_n^-/X^-$ (Eredox, V vs. SCE)	input power, mW	$\Phi_e$ at $E_{redox}$	$\max E_{\mathbf{V}}, mV$ (V at $\eta_{\max}, mV$ )	n	fill factor
1		0.242	0.62	420 (240)	2 75	0.22
1	$CH_3CN/1.0 \text{ M} [Et_4N]Cl/Cl_2 (+0.04)$	0.243	0.52	420 (240)	5.75	0.33
		0.850	0.55	440 (160)	2.0	0.22
		2.47	0.48	400 (150)	1.8	0.16
2		4.57	0.38	480 (150)	1.4	0.15
2	$CH_3CN/1.0 \text{ M} [Et_4N]Cl/Cl_2 (+0.84)$	0.243	0.48	300 (120)	2.0	0.27
		0.847	0.53	340 (120)	2.0	0.22
		2.44	0.45	370 (120)	1.4	0.17
		4.5 /	0.35	290 (120)	1.1	0.15
1	$CH_3CN/1.0 \text{ M} [n-Bu_4N]Br/0.1 \text{ M} Br_2 (+0.48)$	0.240	0.33	170 (80)	0.67	0.24
		0.843	0.26	200 (80)	0.52	0.20
		2.56	0.19	230 (80)	0.41	0.19
		4.60	0.13	240 (80)	0.30	0.18
2	$CH_3CN/1.0 \text{ M} [n-Bu_4N] Br/0.1 \text{ M} Br_2 (+0.49)$	0.240	0.23	70 (20)	0.08	0.14
		0.847	0.11	110 (40)	0.10	0.17
		2.44	0.08	140 (60)	0.09	0.17
_		4.56	0.06	170 (60)	0.09	0.16
1	$CH_{3}CN/1.0 \text{ M} [n-Bu_{4}N] \text{ I}/0.1 \text{ M} \text{ I}_{2} (+0.04)$	0.243	no meas	urable output	_	
		0.856	< 0.01	30 (10)	0.002	0.22
		2.50	0.01	50 (20)	0.004	0.18
		4.60	0.01	55 (20)	0.005	0.21
2	$CH_3CN/1.0 M [n-Bu_4N]I/0.1 M I_2 (+0.12)$	0.242				
		0.847	no meas	urable output		
		2.48				
		4.58				
1	$H_2O/1.0 \text{ M NaI}/0.1 \text{ M I}_2 (+0.28)$	0.242	0.20	380 (280)	2.1	0.53
		0.847	0.21	410 (280)	2.3	0.53
		2.43	0.22	450 (330)	2.6	0.51
		4.61	0.22	470 (330)	2.6	0.49
2	H ₂ O/1.0 M NaI/0.1 M I ₂ (+0.28)	0.250	0.16	340 (230)	1.5	0.52
		0.859	0.21	410 (310)	2.3	0.52
		2.46	0.20	440 (330)	2.3	0.51
		4.66	0.21	460 (330)	2.6	0.51

^a All data are for 632.8-nm excitation of n-type MoS₂ (photoanode) in cells employing the indicated solvent/ $X_n/X^-$  systems. For input power density multiply indicated values by 31.8 cm⁻². Other table headings same as in Table III for the MoSe₂-based cells.

scribed in the literature.^{22,23} fac-BrRe(CO)₃L, fac-[(CH₃CN)Re-(CO)₃(phen)]⁺, fac-[(CH₃CN)Re(CO)₃(2,2'-biquinoline)]⁺, and N,N'-dimethyl-4,4'-bipyridinium were samples previously synthesized in this laboratory.²⁴ [n-Bu₄N]ClO₄, from Southwestern Analytical Chemicals, was vacuum dried at 70 °C for 24 h.

**Electrode Preparation.** MoSe₂ electrodes ( $\sim$ 0.01–0.2 cm² exposed area) were fabricated as follows. Satisfactory electrical contacts were made by rubbing Ga–In eutectic on one side of a crystal and mounting (with conducting silver epoxy) onto a coiled copper wire. The copper wire lead was passed through 4-mm Pyrex tubing and the assembly insulated with ordinary epoxy, leaving only the MoSe₂ 001 face exposed to the electrolyte. MoS₂ electrodes were prepared from materials previously described.⁴

Electrochemical Equipment and General Procedures. Cyclic voltammograms were recorded in  $CH_3CN/0.1$  M [*n*-Bu₄N]ClO₄ solutions with redox reagent concentration at ~1 mM in every case and current-voltage data in solutions as indicated by using a PAR Model 173 potentiostat equipped with a PAR Model 175 programmer. Scans were recorded with a Houston Instruments Model 2000 X-Y recorder. Except where otherwise stated, a single compartment cell was used employing a standard three-electrode configuration with a Pt counterelectrode and a saturated calomel reference electrode (SCE). All measurements are for 25 °C. For all experiments the light source was a He-Ne laser (Coherent Radiation) that provided 632.8-nm light of up to  $\sim 2 \text{ W/cm}^2$ . The power was adjusted by using neutral density glass filters or, for cyclic voltammetry, by expanding the beam to provide  $\sim 50 \text{ mW/cm}^2$ . The intensity of the irradiation was determined by using a Tektronix J16 digital radiometer equipped with a J6502 probe.

Electrodes were routinely checked prior to use and rechecked at the conclusion of most experiments by scanning in a 0.5 mM ferrocene/0.1 M [n-Bu₄N]ClO₄/CH₃CN electrolyte at 100 mV/s (MoSe₂). Under illumination, good electrodes show a photocurrent onset for the oxidation of ferrocene to ferricenium at ~0 V vs. SCE with a well-defined photoanodic peak at ~+0.2 V vs. SCE. MoS₂ photoanodes were checked as previously described⁴ by using [TMPD] as the redox active material.

Note Added in Proof: We have recently found that both n-type  $MoS_2$  and  $MoSe_2$  are stable photoanodes for  $Cl_2$  generation from aqueous 15 M LiCl solutions: Kubiak, C. P.; Schneemeyer, L. F., Wrighton, M. S. J. Am. Chem. Soc., in press.

Acknowledgment. We thank the Office of Naval Research for partial support of this research. Support from the M.I.T. Cabot Solar Energy Fund and GTE Laboratories is also gratefully acknowledged. M.S.W. has been the recipient of a Dreyfus Teacher-Scholar Grant, 1975–1980. Samples of characterized MoSe₂ were kindly supplied by A. Stacy and Professor M. J. Sienko of Cornell University. Valuable discussions with Professors H. Gerischer and A. J. Bard and Dr. A. J. Nozik are acknowledged.

⁽²²⁾ Rudie, A. Ph.D. Thesis, M.I.T., 1978.

⁽²²⁾ Kudic, A. Fil. J. Hiess, Wh.F., 1978.
(23) King, R. B.; Bisnette, M. B. J. Organomet. Chem. 1967, 8, 287.
(24) (a) Fredericks, S. M.; Luong, J. C.; Wrighton, M. S. J. Am. Chem.
Soc. 1979, 101, 7415. (b) Luong, J. C.; Nadjo, L.; Wrighton, M. S. Ibid.
1978, 100, 5790. (c) Staal, L. H.; Oskam, A.; Vrieze, K. J. Organomet. Chem.
1979, 170, 235. (d) Luong, J. C., unpublished results.